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Abstract—Light monitoring will play a crucial role in main-
taining energy resolution for the CMS lead tungstate crystal
calorimeter in situ at LHC. Since 2003, a laser based monitoring
system in its final design has been installed and used in beam
tests at CERN. While the stability of the laser pulse energy and
FWHM width, measured in 24 hours, is at 3% level, a long term
degradation and a drift of the laser pulse center timing at 2
ns/day were observed. The degradation and drift were caused by
the aging of the DC Kr lamp used to pump the Nd:YLF laser,
and would affect the monitoring precision. This paper presents the
design and implementation of a software feedback control which
stabilizes laser pulse energy, width and timing by trimming the
Nd:YLF laser pumping current. For laser runs lasted for more
than 650 hours a stability of pulse energy and FWHM width at
3% level and a pulse timing jitter at 2 ns have been achieved when
the laser pulse center timing is used as the feedback parameter.

Index Terms—Calorimeter, lead tungstate crystal, radiation
damage, laser monitoring, feedback control.

I. INTRODUCTION

T HE 76,000 lead tungstate (PbWO4) crystals in the CMS
electromagnetic calorimeter (ECAL) would suffer from

radiation damagein situ at LHC [1]. Our previous studies
concluded that the scintillation mechanism of PbWO4 crystals
is not affected by radiation, and the loss of light output
is due only to the absorption caused by radiation induced
color centers [1], [2]. The variation of PbWO4 crystal’s light
output (damage and recovery) will be estimated by using a
light monitoring system, which measures variations of crystal’s
transmittance. The light monitoring system is thus crucial in
maintaining the energy resolution of the CMS PbWO4 ECAL
in situ at LHC [3]. A light source and high level distribution
subsystem (LSDS) was designed and constructed at Caltech for
the CMS ECAL monitoring system. The first blue/green laser
system was installed and commissioned at CERN in August,
2001 [4]. The IR/red laser system and the second blue/green
laser system were installed and commissioned at CERN in
August, 2003 [5]. The LSDS system has been operated for
more than 10,000 hours since 2003, and has been a crucial
tool in both the ECAL beam and cosmic tests [6].

For typical laser runs lasted for about 24 h, the stability
of the laser pulse energy and FWHM width was found to be
at 3% level for the blue and IR lasers, much better than the
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10% specification [7]. For runs beyond 24 hours a degradation
of the stability and a drift of the laser pulse timing at a
level of 2 ns/day were observed when the Nd:YLF laser’s
pumping current is fixed. This was due to the aging of the
DC Kr lamp used to pump the Nd:YLF laser [8]. While the
degraded stability may affect monitoring precision, the laser
timing drift may affect synchronization between the laser pulses
and the readout clockin situ at LHC. To address this issue a
software feedback control was designed and implemented in
2006, which measures laser performance parameter and trim
the Nd:YLF laser pumping current. By dong so, the stabilities
of the laser pulse energy, FWHM width and pulse center timing
are significantly improved. In this paper we present the CMS
monitoring laser system, the design of the software feedback
control and the laser performance with the software feedback
control implemented.

II. M ONITORING LASER SYSTEM

Fig. 1 shows the monitoring light source and high level
distribution subsystem (LSDS) for the CMS ECAL. It consists
of three pairs of lasers with corresponding digital scope based
slow monitor, a 5×1 optical switch, an 1×100 optical switch,
a fast monitor, a logarithmic attenuator, a linear attenuator and
a PC based DAQ controller. Each pair of lasers consists of a
Nd:YLF pump laser and a Ti:Sapphire laser, providing laser
pulses of dual wavelength. All three pump lasers are model
527DQ-S Q-switched Nd:YLF lasers, which are commercial
product of Quantronix [9]. It provides frequency doubled laser
pulses at 527 nm with a pulse intensity up to 20 mJ at a
repetition rate up to 15 kHz. All three Ti:Sapphire lasers are
custom made Proteus UV(SHG) lasers from Quantronix, which
provide laser pulse intensity up to 1 mJ, corresponding to about
1.3 TeV energy deposition in PbWO4 crystals, at a repetition
rate up to 100 Hz.

Two wavelengths are available from each pair of lasers by se-
lecting appropriate built-in interference filter in the Ti:Sapphire
laser. Based on our previous studies [4], 440 nm was chosen
as the monitoring wavelength. In order to guarantee 100%
availability of the 440 nm light even when one laser system is
in maintenance, two pairs of lasers provide the 440 nm (blue)
and 495 nm (green) [7]. The third pair lasers provides 709 nm
(red) and 796 nm (IR) for monitoring the gain variations of the
readout electronics chain from the APD to the ADC. Only one
laser pair is used at a time to provide monitoring laser pulses,
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Fig. 1. A schematic showing the design of the CMS ECAL monitoring laser light source and high level distribution system (LSDS).

which is selected by using the DiCon5 × 1 optical switch.
By using the DiCon1 × 100 optical switch the monitoring
laser pulses are sent to one detector element among 88 half
supermodules and Dees. The operation time needed to scan
all 88 detector elements is about 30 minutes. Two attenuators
are installed in the attenuation box between two switches: a
logarithmic filter wheel (0 to 50 db in 10 db step) and a linear
neutral density filter (1 to 99% in 1% step).

Laser operations are under control by a laser DAQ PC. It
selects the laser pair, the detector element, the laser pulse
wavelength and intensity attenuation. All the above parameters
may also be defined by a up-level laser supervisor when the
LSDS is running in the slave mode. In addition, the laser
DAQ PC also controls internal laser parameter, which are not

controlled by the laser supervisor, such as the YLF pumping
current, the digital delays between various laser triggers and
the slow monitor data taking. The Agilent digital scope based
slow monitor analyzes laser pulses from the Nd:YLF laser and
the Ti:Sapphire laser with sampling rate about 1 Hz at 2 GS/s.
An Acqiris DP210 digitizer card, inserted between two optical
switches, functions as a fast monitor, which analyzes every laser
pulse delivered to the detector at 2 GS/sec. Laser pulse energy,
FWHM width and pulse center timing are analyzed on-line
during laser operation by both slow and fast monitors, and the
resultant histories of these parameters as well as the histograms
are stored on disk. While the slow monitor data taking are
controlled by the laser DAQ PC, the fast monitor data taking
are controlled by a dedicated PC as shown in Fig. 1.



0

5

10

15

20

25

30

35

20 21 22 23 24 25 26 27 28 29 30

Quantronix YLF (527DQ) Laser

Pump Current (A)

Y
LF

 P
ul

se
 E

ne
rg

y 
(m

J)

0

50

100

150

200

250

300

350

Y
LF

 P
ul

se
 C

en
te

r 
(n

s)
,

F
W

H
M

 (
ns

)

YLF Pulse Energy, slope@25A = 1.7mJ/A
YLF Pulse Center, slope@25A = -32 ns/A
YLF Pulse FWHM, slope@25A = -6.3 ns/A

Fig. 2. Correlations between the Nd:YLF laser pumping current and the
Nd:YLF laser pulse energy (black), FWHM width (red) and pulse center timing
(blue).

III. D ESIGN AND IMPLEMENTATION OF THE SOFTWARE

FEEDBACK

Fig. 2 and 3 show correlations between the Nd:YLF laser
pumping current and the laser pulse energy (black), FWHM
width (red) and center timing (blue) for Nd:YLF laser and
Ti:Sapphire laser respectively. Also shown in these figures
are the numerical values of the slope defined at the Nd:YLF
laser pumping current of 25 A. It is clear that the laser pulse
energy increases and both the pulse FWHM width and the pulse
center timing decrease when the Nd:YLF laser pumping current
increases. This is understood since the optical gain of the
Nd:YLF crystal increases when the pumping current increases,
and thus the built-up time of the laser pulse in cavity decreases
and a shorter pulse width is generated.

In principle, any parameter or a combination of these pa-
rameters can be used as the input to calculate feedback needed
for trimming the Nd:YLF laser pumping current and thus
compensating the DC Kr lamp aging effect. Looking into the
slope values of these parameters in Fig. 2 and 3 and their
sensitivities as compared to the corresponding r.m.s. values
of the parameter, however, the Ti:Sapphire laser pulse center
timing is preferred as the feedback input.

A software feedback control was designed in the laser control
and DAQ program. Fig. 4 is a schematic describing the basis
operation of the software feedback. Fig. 5 shows the control
panel and setting window running under the laser DAQ program
for the software feedback.

When the software feedback is enabled, the program first
calculate an average of a selected parameter for a defined event
number. This average is then compared to a predefined number
and their difference is used to calculate an incremental variation
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Fig. 4. A schematic describing the software feedback control.

of the Nd:YLF laser pumping current by using the correspond-
ing slope. If the absolute value of the incremental variation is
larger than 0.1 A, then the Nd:YLF laser’s pumping current is
trimmed correspondingly, otherwise not. This amplitude of 0.1
A is limited by the Quantronix Nd:YLF laser control hardware.
Upper and low limits of the Nd:YLF laser pumping current are
also set for laser safety. The Nd:YLF laser pumping current
will stay unchanged when it reaches the upper limit, indicating
that the DC Kr lamp needs to be replaced.



Fig. 5. The laser DAQ control panel (top) and the feedback setting window (bottom).
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Fig. 6. Histories of the laser pulse energy, FWHM width, pulse center timing
and corresponding YLF laser pumping current are shown as function of time
for a Ti:Sapphire laser run at 440 nm without feedback for more than 130
hours. The corresponding histogram distributions are shown at right.

IV. L ASER STABILITY WITH SOFTWARE FEEDBACK

The software feedback control was first implemented for
individual laser runs during ECAL tests in 2006 at CERN.
Fig. 6 and Fig. 7 summarize typical laser performance at
440 nm for two laser runs without and with the software
feedback control lasting for 130 and 180 hours respectively.

35

40

E
ne

rg
y 

(a
.u

.)

DSO2943, Ti:S-1, 440 nm

25

30

F
W

H
M

 (
ns

)

180

190

200

C
en

te
r 

(n
s)

0 50 100 150

22.4

22.6

22.8

Time (hours)

Y
LF

 C
ur

re
nt

 (
A

)

0

250

500

34 38

σ = 1.4%

0

250

500

24 31

σ = 2.0%

0

250

500

182 196

σ = 1.8ns

0

2000

22.3 22.8

Fig. 7. The same as Fig. 6 for a Ti:Sapphire laser run at 440 nm for more
than 180 hours by using the Ti:Sapphire laser pulse timing as the software
feedback parameter.

The effectiveness of the software feedback is clearly observed.
As shown in the histograms at right, significant improvement
was observed in stabilities of the laser pulse energy (2.3% to
1.4%), pulse FWHM width (3.1% to 2.0%) and pulse center
timing jitter (4.1 ns to 1.8 ns) by using the Ti:Sapphire pulse
center timing as the feedback parameter.

By using a predefined parameter value, the software feedback



control was made working across several runs. Fig. 8 shows
history and histogram for combined Ti:Sapphire laser runs
at 440 nm in September and October with a total run time
more than 650 hours. At left is the history plots of the laser
pulse energy, FWHM width, pulse center timing and the YLF
pumping current. Each data point represents an one hour
average of the slow monitor data. The effectiveness of the
software feedback control is clearly shown in the laser pulse
timing history, where degradations are compensated by the YLF
pumping current adjustment at 0.1 A a step from 22 A to
23.4 A. The overall stability of the Ti:Sapphire laser pulse
energy and FWHM width is 2.5% and 3.5% respectively, much
better than the 10% specification. The corresponding pulse
jitter during this period is 2 ns, much better than the 3 ns
specification.
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Fig. 8. The same as Fig. 7 for combined several Ti:Sapphire laser runs at
440 nm for more than 650 hours.

We also notice two jumps in the FWHM history occurred
at 220 and 420 hour. These two jumps are suspected to be
caused by temperature variations in the laser barracks at CERN
test beam site. Although the Ti:Sapphire laser’s SHG crystal
is thermally stabilized by a Neslab chiller, variations of the
room temperature would slightly change the Ti:S SHG crystal’s
matching angle, thus compromise the SHG crystal’s conversion
efficiency. These jumps may also related to the water filling
operation for the Neslab cooler, which changes the stabilized
temperature by 0.5◦C.

Environmental temperature dependences of the Ti:Sapphire
laser pulse performance were measured. The slope of the pulse
energy, FWHM and center timing was found to be -4.3%/◦C,
1.3 ns/◦C and 7.9 ns/◦C respectively. The poor temperature
stability observed in the laser barracks at CERN test beam site
would be improvedin situ at LHC, where the laser barracks
are central air-conditioned with a temperature stability of better

than 0.5◦C.

V. SUMMARY

Because of the natural aging of the DC Kr lamp used to
pump the Nd:YLF laser the performance of Ti:Sapphire lasers
are degraded in long runs. A software feedback control was
designed and implemented to compensate this aging effect by
trimming the Nd:YLF laser pumping current at 0.1 A steps.
The result with the software feedback implemented shows a
significant improvement. As demonstrated in several laser runs
lasting for more than 650 hours, the stability of the Ti:Sapphire
laser pulse energy and FWHM width can be maintained at 3%
level, and the pulse center timing jitter can be reduced to 2 ns.
This improvement will help maintaining the laser monitoring
precision for the CMS ECALin situ at LHC.

REFERENCES

[1] CMS Collaboration,The Electromagnetic Calorimeter Technical Design
Report, CERN/LHCC 97-33, 1997.

[2] R.Y. Zhu, “Radiation damage in scintillating crystals,”Nucl. Instrum.
Meth. A, vol 413, pp. 297-311, 1998.

[3] X.D. Qu, L.Y. Zhang, R.Y. Zhu, “ Radiation Induced Color Centers and
Light Monitoring for Lead Tungstate Crystals,”IEEE Tran. Nucl. Sci.
vol. 47, no. 6, pp. 1741-1747, Dec. 2000.

[4] L.Y. Zhang, K.J. Zhu, R.Y. Zhu and D. Liu, “Monitoring Light Source
for CMS Lead Tungstate Crystal Calorimeter at LHC,”IEEE Trans. Nucl.
Sci., vol. 48, no. 3, pp.372-378, Jun. 2001.

[5] D. Bailleux, A. Bornheim, L.Y. Zhang, K.J. Zhu, and R.-Y.Zhu, and D.
Liu,“ ECAL Monitoring Light Source at H4,” CMS IN 2003/045, 2003.

[6] P. Adzic, R. Alemary-Fernadez, C.B. Almeida, N.M. Almeida, G. Anag-
nostou, M.G. Anfrevilleet al., “Results of the first Performance Tests of
the CMS Electromagnetic Calorimeter,”Eur Phys J C 44, s02, pp. 1-10,
2006.

[7] L.Y. Zhang, D. Bailleux, A. Bornheim, K.J. Zhu, R.Y. Zhu, “Performance
of the Monitoring Light Source for the CMS Lead Tungstate Crystal
Calorimeter,”IEEE Trans. Nucl. Sci., vol. 52, no. 4, pp.1123-1130, Aug.
2005.

[8] L.Y. Zhang, R.-Y. Zhu and D. Liu, “ Monitoring Lasers for PWO ECAL,”
CMS IN 1999/014, 1999.

[9] Quantronix, 41 Research Way, East Setauket, NY 11733, USA,
http://www.quantronixlasers.com.


