

Hardware status and commissionning

- 2 new lasers installed and being commissioned
 - Laser-Compact green laser :
 - Photonics blue laser :
- 2 Quantronix lasers revised
 - Both as "good" as end of 2011
- New PIN installed to monitor the laser pulses
 - Hammamatsu SN5973 in parallel with DET10 used in 2011

- installation march 12-16
- installation march 19-23

Calibration sequence in 2012

i r f u CEO saclay

• Light sources:

Quantronics blue laser 440 nm EB+EE **Photonics blue laser** 447 nm EB+EE **527 nm** EB+EE • Laser-Compact green laser **Quantronics (?) red laser** 800 nm EB **Blue LED** 455 nm EE **617 nm Orange LED** EE

- Photonics extremely stable
- Quantronix and green drifting
 - ► Timing remote control of green laser not yet implemented

- Photonics and green extremely stable
 - ► Amplitude changes only when attenuators are moved
- Quantronix unstable

- Photonics and green extremely stable
 - ► Amplitude changes only when attenuators are moved
- Quantronix unstable

- Use Green laser with new PIN
 - Short pulse (~5 ns) closer to Dirac pulse
 - Use new PIN Faster response
- Assumption :
 - APD = laser * SPR_{electronics} * SPR_{fiber} * SPR_{sphere} = laser * SPR_{eff}
 - ► SPR_{fiber} and SPR_{sphere} independent of light source and crystal
 - Use deconvolution technics
 - ► FFT(SPR_{eff})=FFT(APD)/FFT(laser) + tricks
- Control :
 - Use SPR_{eff}⁵²⁷ to reconstruct the APD signal in blue

Deconvolution (1/2)

- $spr(t) = FT^{-1}[FT(apd_{true}(t))/FT(laser_{true}(t))]$ = $FT^{-1}[APD_{true}(f)/LAS_{true}(f)]$
 - laser_{meas}(t)=laser_{true}(t)+noise(t)
 - ► Find best estimate of laser_{true}(t)
 - $LAS_{meas}(f) = LAS_{true}(f) + N_{white}(f)$ at first approximation

- spr(t) = FT⁻¹[APD_{meas}(f)/(LAS_{meas}(f)+ ε)
 - ε=10⁻⁶
- Laser and APD/VPT signals extended to 1024 samples
 - Reproduction of last samples for laser
 - $t/\tau^*exp(-t/\tau)$ extrapolation for APD and VPT signals

M.D. Monitoring Working Group I

Comparison with expectations

• Electronic supposed to be a RC-CR amplifier

- $spr(t) = t/\tau * exp(-t/\tau)$
- Measured in 2009, used in 2010 and 2011 in production

• 43 ns is what was measured in lab by Mark Raymond (2004 ?)

irfu

saclay

Application to laser analysis

• Compare apd/pn for both analysis (DET10 vs S5973)

- **DET10 : Splitter and linearity corrections**
- S5973 : linearity corrections

Compare lasers responses

• Compare apd/pn for both blue lasers

• Analysis with DET10 (a la 2011)

- Photonics response seems more "noisy"
 - ► To be understood
- Photonics validates analysis with S5973

- Look at reliability of Photonics on long term
- Stabilize Photonics analysis
 - Understand point-to-point fluctuations
- Validate analysis with PIN2 on long term
 - ► Swap analysis (DET10 ↔ S5973) during next TS ?
- Recalibrate linearity response
 - ► Motorized log attenuator mounted on green laser.
 - 1 turn in 36 secs
 - Can do the linearity scan with sequence of ~4000 events with attenuator turning.
 - ~1 minute per monitoring region
 - Full scan of ECAL in less than 100 minutes