Laser Monitoring System

History
Lasers at pt5
EB commissioning
Laser sequence

- ECAL week 15 April 2008 -

David BAILLEUX

US CMS on behalf of Caltech group

History

August 2001: Blue laser in zone control area, H4.

Test with M0' module

July 2003: New laser room behind test beam area.

2 new lasers: one more BLUE, one RED.

Test with SM0-SM1 module

April 2005: Clean room installation for the 3 lasers (Class <1000).

June 2006: Upgrade of the laser system

➤ New hardware:

- an 1 x 5 switch + 1X100 switch

- a new attenuation box with logarithmic and linear attenuators.

➤ New software:

- feedback on current to compensate YLF lamp aging

- remote control of both logarithmic and linear attenuators,

- separate processing for hardware and data acquisition.

March 2007: Move RED and one BLUE laser (laser2) to pt5.

Start EMTC installation in June.

Feb. 2008: Stop laser1 at H4

March 2008: Move the second BLUE laser (laser1) to pt5.

> Upgraded software: 3 lasers on-line

→ All 3 lasers operational

Lasers at pt5

March 2007:

Laser 2 - New crystal (endcap no glue anymore, leak),

- New flow tube,

- New lamp.

Laser 3 - New YLF LBO (water cooled, leak)

New YLF Q-Switch (in May)

March 2008:

Laser 1 - New Ti:S HV pulser before moving to pt5 (Xmas break)

- New YLF Q-Switch (unstable pulse)

- New RF driver (compatibility)

Laser PCs:

Ecal-laser-room-01.cms → laser hardware control, slow monitoring

Ecal-laser-room-02.cms → .Fast monitoring (Acqiris PCI board).

.VME control for *Matacq and EMTC*

Ecal-laser-room-04.cms → laser PC supervisor for Matac and EMTC not yet ready

Mixed water pt5

Laser requirement:

particules size ~30 µm (max 70 µm)

Mixed water: unknown

From now —> change filter quite often but after 1-2hrs filters are brown. Can't estimate the effect on the laser heat exchanger after long time.

Mixed water pt5

Laser room in USC55 → **Mixed water 16°C** (18°C max for laser)

The laser filters are filtering the entire volume of water (very large) in the RACKS circuit.

25 or 50um filter → same visual effect on filter.

Experimental solutions (7 months):

1) Settling Tank

The sediments found in the RACK circuit → metallic particles.

→ No improvement (filter still becoming clogged rapidly) after 2 months.

2) Cyclone Filter

Centrifugal forces to separate out particles from the fluid and have no moving parts.

→No effect at all.

UP TO NOW:

closed circuit with mixed water not possible because of temperature specification.

FROM LAST WEEK:

seems in fact there is no problem to use CHILLED WATER!

TO BE CONFIRMED

(meeting with B.Pirrolet, TS CV)

Closed circuit with pump and heat exchanger from H4

- Dismounted, moved and installed in pt5 (ZEC)
- Buy a new pump as spare

EB commissioning

Laser fibers installation for Barrel:

18 cables

1 cable = 6 ribbons = 2 SMs → 1 spare for each SM

- → Protection tube for fibers cables from EB to laser barracks
- → All EB fibers OK: no damage (no spare fiber used)

EB commissioning

Commissioning from Nov to Dec 2007:

Laser2 setting during commissioning: -10dB and 50% attenuation

Up to now → only one laser used for EB

Optical switch mapping:

EB-	Side	Laser ribbons	Channel optical switch
,	A	1	1
1	В	2	2
,	A	3	3
	В	4	4
,	A	1	5
3	В	2	6

				i i
18	A	3	35	
	В	4	36	

EB+	Side	Laser ribbons	Channel optical switch
1	A	1	37
	В	2	38
2	A	3	39
	В	4	40
3	A	1	41
	В	2	42

18	A	3	71
	В	4	72

EB commissioning

EB +	side	Run number	Date1	ADC counts	Date2
1	A(L)	run 28217	20-Nov	2000	12Dec
	B(I)			1800	
2	A(L)			2200	12Dec
	B(I)			2100	
3	A(L)	run 28213	20-Nov	1800	29-Nov
	B(I)			2000	
4	A(L)			2000	14 Dec
	B(I)			1800	
5	A(L)	2000	29-Nov	2000	28-Nov
	B(I)	2200		2300	
6	A(L)			2100	29-Nov
٥	B(I)			2100	
7	A(L)			2000	13 Dec
_ ′	B(I)			1700	
8	A(L)			2400	13 Dec
٥	B(I)			2400	
9	A(L)			1800	13 Dec
-	B(I)			3000	
10	A(L)			2400	13 Dec
10	B(I)			2500	
11	A(L)			2000	13 Dec
11	B(I)			2000	
12	A(L)			2000	13 Dec
12	B(I)			2000	
13	A(L)			1700	12Dec
13	B(I)			1800	
14	A(L)	run 28611	23-Nov	2300	12 Dec
14	B(I)			2300	
15	A(L)	2000	28-Nov	2000	29-Nov
15	B(I)	2000		2100	
16	A(L)			2000	12Dec
10	B(I)			1000	
17	A(L)		9-Nov	2500	14 Dec
1/	B(I)			1900	
18	A(L)		10-Nov	2500	28-Nov
	B(I)			1800	

EB -	side	Run number	Date1	ADC counts	Date2
1	A(L)	run 27881	19-Nov	1900	30-Nov
-	B(I)	run 27884		1900	
2	A(L)			1700	13 Dec
	B(I)			2300	
3	A(L)			2600	30-Nov
3	B(I)			2050	
4	A(L)			1700	29-Nov
4	B(I)			2000	
5	A(L)	run 28188	20-Nov	1900	1 Dec
3	B(I)			1500	
6	A(L)	run 28545	23-Nov		1 Dec
0	B(I)				
7	A(L)	1600	28-Nov	1700	30-Nov
,	B(I)	1800		1800	
8	A(L)	1200	28-Nov	2500	29-Nov
0	B(I)	2200		2100	
9	A(L)	2200	28-Nov	2200	30-Nov
,	B(I)	2200		2100	
10	A(L)	2300	28-Nov	2000	30-Nov
10	B(I)	2000		2200	
11	A(L)			2000	12 Dec
-11	B(I)			2500	
12	A(L)				
12	B(I)				
13	A(L)		15-Nov	2000	30-Nov
13	B(I)			2100	
14	A(L)				1Dec
14	B(I)				
15	A(L)		15-Nov		1 Dec
13	B(I)				
16	A(L)		10-Nov	1900	29-Nov
	B(I)			2000	
17	A(L)		7-Nov		
1/	B(I)				
18	A(L)	run 27808	19-Nov		
	B(I)	run 27811			

Laser sequence

Switching time issue for monitoring sequence:

→ from one region to another we need reliable delay
≤ 4 sec.

Refining laser software to meet this maximum

Under consideration:

- GPIB communication failure → resynchronization not reported on DAQ
- Laser device failure

→ error on laser software but not reported on DAQ

Call expert

Laser status for DAQ: Color, switch position, attenuation

Laser status to be added:

- laser current?
- shutter position?
- main trigger delay?

Room temperature monitoring

During commissioning: breakdown of air conditioning

No control of laser stability

In January: installation of 1 air conditioning in laser2 room as spare (used only if main unit stopped)

summary

- → Having closed water circuit as soon as possible
- → Fixing switching time sequence
- → Running blue laser regularly to check SMs good health