

The CMS ECAL Laser Monitoring System

9th ICATPP Conference on

Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications

Adi Bornheim California Institute of Technology

Villa Olmo, October 18, 2005

Introduction

CMS is building a high resolution Crystal Calorimeter (ECAL) to be operated at LHC in a very harsh radiation environment.

 \Rightarrow Talk by P. Bloch (Monday)

Calibrating and maintaining the calibration of this device will be very challenging. Hadronic environment makes physics calibration more challenging.

 \Rightarrow Talk by P. Meridiani (talk today)

PWO Crystals change transparency under radiation.

The damage is large (few % - typically \sim 5 % for CMS ECAL barrel radiation levels) compared to the desired constant term (0.5 %).

The dynamics of the transparency change is fast (< 1h) compared to the time scale needed for a calibration with physics events(weeks - month).

 \Rightarrow Compensate this by monitoring the change with a lase monitoring system

 \Rightarrow For best linearity 440 nm is chosen to monitor radiation damage

For red/infrared laser : optical fiber transmittance, APD, electronics cross check

Damage and Recovery in a the 'LHC Cycle'

 \Rightarrow Damage-recovery cycle in sync with the ~12 hour LHC fill cycle

 \Rightarrow Can use same correction parameters for all crystals.

October 18, 2005

Abort gaps occur at ~10 kHz - Laser pulses at ~100 Hz \Rightarrow Use ~1% of gaps

\Rightarrow Scan entire ECAL every 20 minutes

>Pulse Energy : 1.0/0.6 mJ at 440nm/495nm

Enough light to flash several hundred crystals at a time trough a multi level light distribution system.

Pulse Energy Stability: ECAL specification < 10 % RMS Small enough to avoid possible non-linearities in the APD/PN ratio.

Pulse Width : ECAL specification < 40 ns</p>

Match the 25 ns read out cycle of the ECAL electronics.

Pulse Jitter : Pulse timing, long/short term, typically <4 ns / < 2 ns Ensure precise timing in LHC 25 ns cycle.

➤Wave Length :

440 nm primary wavelength at the PWO emission peak, 495 nm /800 nm / 700 nm for systematic cross checks.

October 18, 2005

October 18, 2005

October 18, 2005

Laser Source Monitoring

Each laser has a monitor output which allows to adjust and monitor its performance of pulse energy, pulse width and pulse timing.

 \Rightarrow Stability typically a few percent / few ns.

THE REPORT OF THE OWNER

Laser Monitoring Performance

Summary

- Final design Laser Monitoring System has been installed and tested over several thousand hours at the test beam.
- >All performance criterions have been achieved.
- ➢Now, installation and comissioning the entire system next challenge. After that, operating the system over 10 years and follow the crystal transparency on the level of 0.1%.