

Laser Pulse Width

ECAL Test Beam and Pre-calibration Meeting, CERN

J. Veverka, A. Bornheim, C. Rogan, Y. Ma California Institute of Technology

March 22, 2007

Outline

- Review of the laser monitoring issues
- Results of the measurements of the correlation between APD/PN and laser pulse width

Review

Laser Monitoring Issues

Laser Monitoring

- Purpose: measure the ECAL crystal transparency change due to irradiation during the LHC running
- Goal: ~1 ‰ APD/PN stability
- Need: understand systematic correlation between APD/PN laser pulse
 - Width
 - Timing
 - Amplitude
- Here: concentrate on the width issues

APD/PN-Width Dependence

- Simulated as a convolution of the laser pulse shape and electronics response:
 - "The dependence observed in data can be reproduced based on the properties of the pulses alone."
 - Adi Bornheim, TB meeting, 20 Sep 2005 "Slope (normalized APD/PN vs. width): 2 %/ns"
 - Adi Bornheim, TB meeting, 3 Nov 2005
- Measured for a few channels of the 2004 SM10 data to be linear with a slope of around 2.5 %/ns. For details, see talk by Adi Bornheim, TB meeting, 3 Nov 2005.
- Expected long-term width stability ~1-2 ns
- Implication: The effect is larger than required precision, a correction is needed.
- Here: Measure the effect for the 2006 TB data on a larger scale

New Results

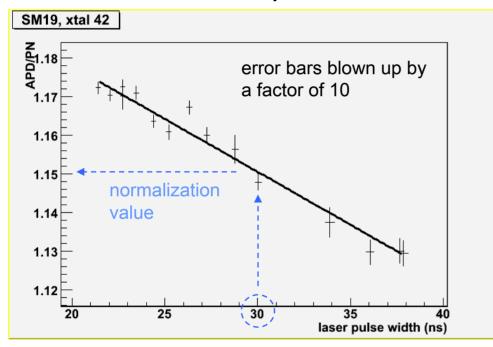
APD/PN and Laser Pulse Width Correlation Measurements

Used Data

APD/PN data

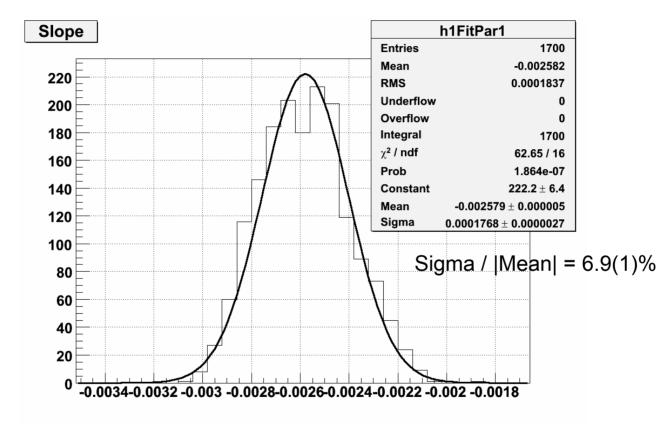
- Pulse width scans for 7 SMs: 2, 4, 13, 17, 19, 20, 22 (1700 channels each)
- Total of ~90 useful laser runs (600 events each)
- Standard online laser code used for reconstruction
- Gaussian fit for each channel of each run:
 - APD/PN value = mean of the fit
 - APD/PN value error = (sigma of the fit) / $\sqrt{600}$

Laser pulse width data


- Fast Monitor in the laser barracks used
- All 2006 laser runs reconstructed and matched
- Gaussian fit for each run:
 - Width value and its error = same as for the APD/PN

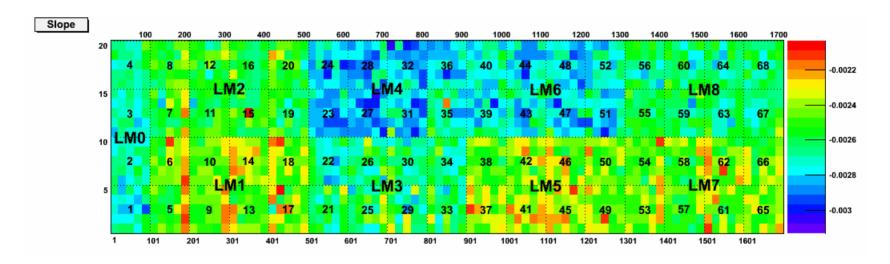
APD/PN-Width Linear Fits

Example



- Linear fit of the APD/PN-width dependence for each channel of each SM
- Normalize APD/PN by the fit value at width = 30 ns
- Distributions and crystal maps for the slope, intercept, chi2, etc. of the linear fits for the normalized APD/PN values

Slope Distribution Example - SM17


Max. single-value correction error $\sim (0.18 \text{ }\%/\text{ns}) \times (2 \text{ ns}) = 0.36 \text{ }\% < 1 \text{ }\%$ For more plots like this one, see

http://ultralight.caltech.edu/hepwiki/PulseWidthSystematics

Slope Crystal Map Example - SM17

- Noticeable LM structures
 - Their scale is small compared to the slope values
 - They are a general feature of the APD/PN-width dependence for more or less all studied SMs
 - Interesting but not yet thoroughly investigated
- For more plots like this one, see
 http://ultralight.caltech.edu/hepwiki/PulseWidthSystematics

Results

SM	# Runs	Run Numbers*	Stand	Slope (err) [‰/ns]
04	15	25067-81	H4 cosmic	-2.01(16)
13	14	19811-24	H4 cosmic	-2.91(12)
17	5	20753-57	H4 cosmic	-2.58(18)
19	15	21683-99	H4 cosmic	-2.28(11)
20	9	23254-63	H4 cosmic	-2.39(13)
22	13	13582-96	H4 test beam	-2.04(41)

^{*}Some run numbers in the range might be excluded

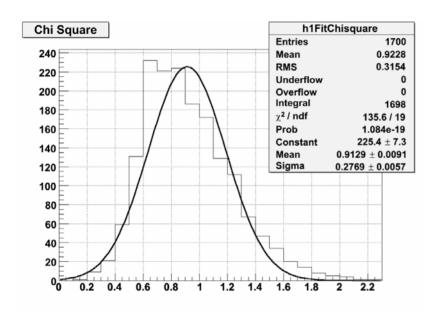
- Legend:
 - Slope = mean of a Gaussian fit to a distribution of 1700 values as in slide #9
 - Err = sigma of the Gaussian fit
- Note that the slope values are compatible across the different SMs
- Two SMs measured incidentally with improper intensity settings results not listed here since the slope values are not usable.
- Assuming single-value correction for all SMs, it's maximum error would be roughly (0.5 ‰/ns) × (2 ns) = 1 ‰ → might/might not be good enough, evaluation needed

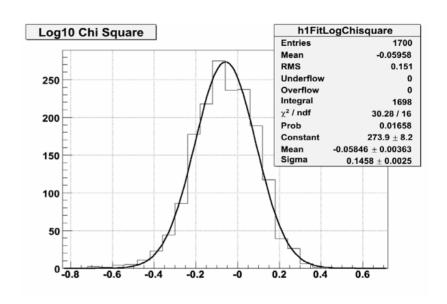
Summary

- Correlation of APD/PN and laser pulse width measured for all channels of 7 super modules – linear dependence observed
- Results are consistent with expectations based on laser-pulse-shape and electronics convolution simulation
- Some LM systematic structures observed

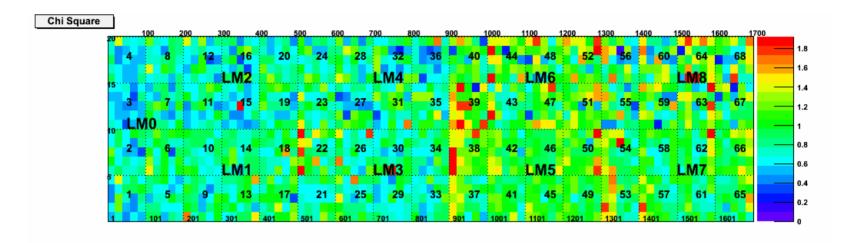
Outlook

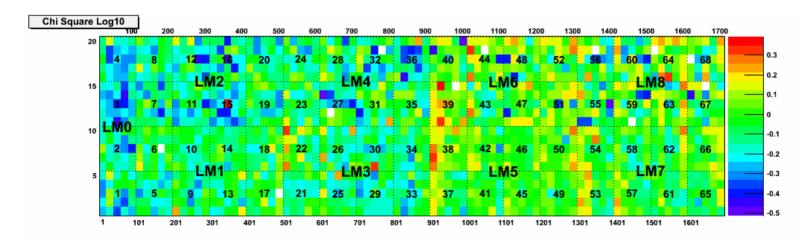
- Apply width-based correction to TB data
- Significant APD/PN stability improvement expected
- Stay tuned for new results



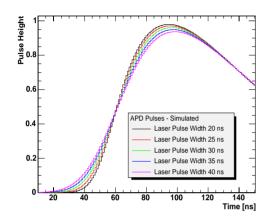

Backup Slides

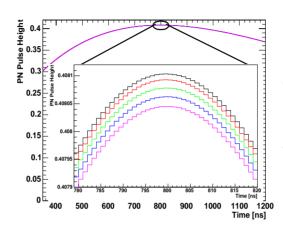
Chi2 and Log10(Chi2) for SM17



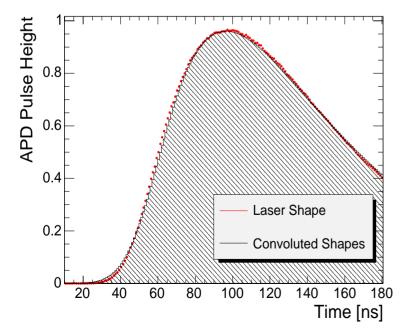


Chi2 and Log10(Chi2) for SM17


Review: Width


Review of APD/PN and Laser Pulse Width Correlation

Pulse Shape Convolution



Reminder:

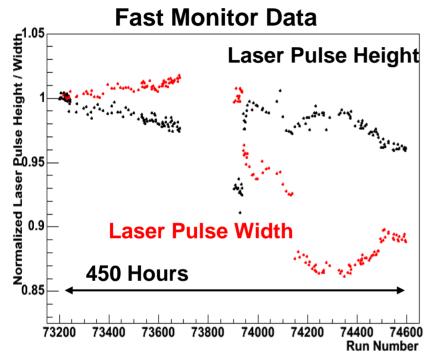
Pulse shape is a convolution of the electronic shape and the 'line shape' of the light. In case of a laser pulse, essentially a gaussian with FWHM of 20 – 40 ns.

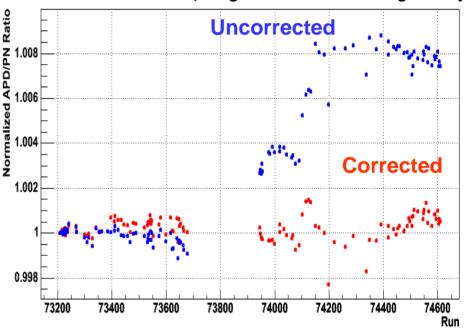
Details: See talk on 20 Sep. 2005.

Remaining issue:

The pulse width dependency extract from simulated shapes depends strongly on the a priori unknown electronic shape. This makes it difficult to predict the actual pulse width dependency.

Solution:


Tune the convoluted shape such that it matches the shape in data.

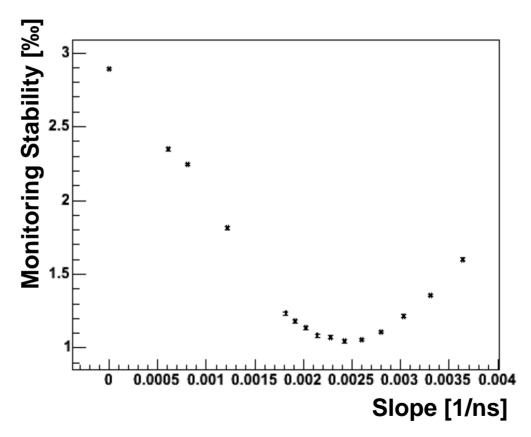

Pulse Width Correction on SM10 in

2004

Data analysed:

Part of Period 1 (not all the data was re-reprocessed to fix PN data) and Period 3. Period 2 is problematic and thus not used.

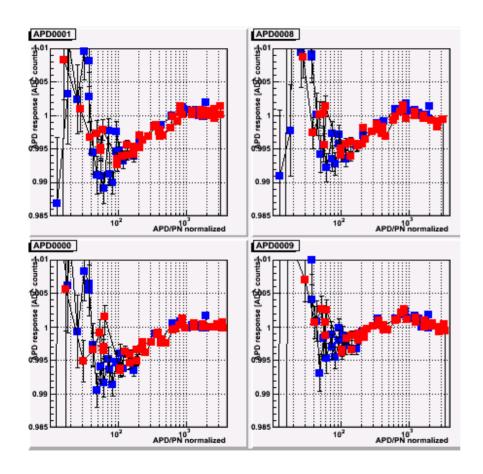
Pulse width correction:


APD/PN cor = APD/PN+c·PW Laser

Monitoring Stability vs Pulse Width Correction

With a linear correction we can vary the slope to study the sensitivity:

From SM10 data it appears that we don't have to know the slope with great precision.


Review: Amplitude

APD/PN and Laser Pulse Amplitude Correlation

APD [ADC Counts] vs APD/PN for SM22

- Plots by Marc Dejardin as recently presented at a TB meeting by Nadia Pastrone
- For the SM22 PW scan, the intensity changes between 2000 and 4000 ADC counts. For that the APD/PN changes ~3.0 %
- From the linearity scan with the laser above we see that the nonlinearity as a function of the pulse intensity is of the order of ~0.1 %.